Company | Country | Industry | Employees | Revenue |
---|---|---|---|---|
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
|
pandasql allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pandasql seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or pandas.
技术使用统计数据和市场份额
您可以通过筛选地理位置、行业、公司规模、收入、技术使用情况、职位等来根据您的需求定制这些数据。您可以以Excel或CSV格式下载数据。
您可以获得有关此数据的提醒。您可以通过选择您感兴趣的技术来开始,然后当有新公司使用该技术时,您将会在您的收件箱中收到提醒。
您可以将这些数据导出到一个Excel文件,然后导入到您的CRM中。您也可以将这些数据导出到API。
Pandasql 被用于 2 个国家
我们掌握了关于使用Pandasql的2家公司数据。这个精心策划的名单可以下载,并附带了重要的公司具体信息,包括行业分类、组织规模、地理位置、融资轮次和收入数据等。
Technology
is any of
Pandasql
有 205 个 Pandasql 替代品
15.6k
4.8k
4.7k
2.9k
2k
2k
1.9k
1.2k
1.1k
968
881
852
747
630
580
551
542
389
319
262
259
258
248
218
205
175
168
122
112
96
88
85
80
77
73
70
68
68
62
59
44
42
33
30
28
25
23
22
21
20
常见问题
我们的数据来自于从数百万家公司收集的招聘信息。我们在公司网站、招聘平台和其他招聘平台上监控这些招聘信息。分析招聘信息提供了一种可靠的方法来了解公司正在使用的技术,包括他们使用的内部工具。
我们每天更新数据,以确保您访问的是最新的可用信息。这一频繁的更新过程保证了我们的洞察力和情报反映了行业内的最新发展和趋势。
Pandasql is a powerful Python library that allows users to query and manipulate data frames using SQL syntax, bridging the gap between pandas DataFrames and SQL databases. This technology offers a convenient way for data analysts and scientists to leverage their SQL knowledge within the Python environment, providing a seamless integration between these two powerful tools. Pandasql simplifies the data analysis process by enabling users to perform complex queries, joins, and aggregations on pandas DataFrames with ease.
In the category of Database Tools, Pandasql stands out as a versatile tool for data manipulation and analysis. It enables users to harness the functionality of SQL queries on their pandas DataFrames, offering a familiar language for those with SQL experience. By combining the strengths of pandas and SQL, Pandasql streamlines the workflow for data professionals, allowing them to perform complex data operations efficiently and effectively.
Founded by Yan Zhu in 2015, Pandasql was created with the vision of enhancing the data analysis capabilities of Python users by incorporating SQL functionalities. The motivation behind the development of Pandasql was to provide a user-friendly interface for querying and manipulating data frames, catering to the needs of data scientists, analysts, and researchers. Since its inception, Pandasql has gained popularity among the data community and has become a go-to tool for data manipulation tasks.
Currently, Pandasql holds a significant market share within the Database Tools category, with a growing user base and adoption rate. As the demand for streamlined data analysis tools continues to rise, Pandasql is poised to experience further growth in the future. With its intuitive interface and powerful capabilities, Pandasql is expected to maintain its position as a leading technology in the data manipulation landscape, driving innovation and efficiency in the field of data analysis.
您可以访问 TheirStack.com,获取使用 Pandasql 的公司更新名单。我们的平台提供了一个全面的数据库,涵盖了使用各种技术和内部工具的公司。
截至目前,我们拥有关于 2 家使用 Pandasql 的公司的数据。
Pandasql 被广泛应用于包括 "Software Development", "Financial Services" 在内的各个行业的各种组织中。欲了解所有使用 Pandasql 的行业的完整列表,请访问 TheirStack.com。
一些使用Pandasql的公司包括SAP, BlackRock以及更多公司。您可以在TheirStack.com上找到使用Pandasql的2家公司完整列表。
根据我们的数据,Pandasql 在 德国 (1 companies), 美国 (1 companies) 最受欢迎。然而,它被全世界的公司所使用。
您可以在TheirStack.com上搜索Pandasql,来找到使用该技术的公司。我们跟踪数百万家公司的招聘信息,并借此发现他们正在使用的技术和内部工具。