Company | Country | Industry | Employees | Revenue |
---|---|---|---|---|
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
|
rasa NLU (Natural Language Understanding) is a tool for intent classification and entity extraction. You can think of rasa NLU as a set of high level APIs for building your own language parser using existing NLP and ML libraries.
技术使用统计数据和市场份额
您可以通过筛选地理位置、行业、公司规模、收入、技术使用情况、职位等来根据您的需求定制这些数据。您可以以Excel或CSV格式下载数据。
您可以获得有关此数据的提醒。您可以通过选择您感兴趣的技术来开始,然后当有新公司使用该技术时,您将会在您的收件箱中收到提醒。
您可以将这些数据导出到一个Excel文件,然后导入到您的CRM中。您也可以将这些数据导出到API。
rasa NLU 被用于 4 个国家
我们掌握了关于使用rasa NLU的15家公司数据。这个精心策划的名单可以下载,并附带了重要的公司具体信息,包括行业分类、组织规模、地理位置、融资轮次和收入数据等。
Technology
is any of
rasa NLU
公司 | 国家 | 行业 | 雇员 | 收入 | 技术 |
---|---|---|---|---|---|
Software Development |
| rasa NLU | |||
加拿大 | It Services And It Consulting | 93 |
| rasa NLU | |
美国 | Advertising Services | 1.5K | $350M | rasa NLU | |
印度 | It Services And It Consulting | 180 |
| rasa NLU | |
Software Development |
| rasa NLU | |||
美国 | It Services And It Consulting | 116 |
| rasa NLU | |
美国 | Banking | 214K |
| rasa NLU | |
Manufacturing | 10K |
| rasa NLU | ||
Telecommunications |
| rasa NLU | |||
| rasa NLU |
有 51 个 rasa NLU 替代品
5.5k
4k
3.5k
2.8k
1k
775
602
587
184
113
100
90
83
59
43
39
37
34
22
21
20
19
14
11
9
7
5
5
4
4
3
3
3
3
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
常见问题
我们的数据来自于从数百万家公司收集的招聘信息。我们在公司网站、招聘平台和其他招聘平台上监控这些招聘信息。分析招聘信息提供了一种可靠的方法来了解公司正在使用的技术,包括他们使用的内部工具。
我们每天更新数据,以确保您访问的是最新的可用信息。这一频繁的更新过程保证了我们的洞察力和情报反映了行业内的最新发展和趋势。
Rasa NLU is an open-source natural language understanding (NLU) tool that is widely used for building AI assistants and chatbots. It allows developers to understand user messages and extract relevant information. Rasa NLU utilizes machine learning to classify intents and extract entities from user input, enabling chatbots to provide more accurate and contextually relevant responses.
In the realm of NLP and Sentiment Analysis, Rasa NLU falls under the category of conversational AI platforms. These platforms are designed to enable businesses to create sophisticated chatbots and virtual assistants that can engage with users in natural language. Rasa NLU stands out in this category for its flexibility, as it allows developers to customize and extend its functionality according to their specific requirements.
Founded in 2016 by Alan Nichol and Alex Weidauer, Rasa NLU was born out of the need for a powerful yet accessible NLU solution for developers. Their motivation stemmed from the recognition that existing tools were often limited in terms of customization and scalability. With Rasa NLU, the founders aimed to democratize NLU technology and empower developers to build advanced conversational AI applications without being constrained by proprietary platforms.
Currently, Rasa NLU holds a significant market share within the conversational AI platform category, with a growing user base and adoption across various industries. As businesses increasingly prioritize customer engagement and automation, the demand for advanced NLU solutions like Rasa NLU is expected to rise. With continuous innovation and community support, Rasa NLU is poised to expand its market share and solidify its position as a leading tool for building intelligent chatbots and virtual assistants.
您可以访问 TheirStack.com,获取使用 rasa NLU 的公司更新名单。我们的平台提供了一个全面的数据库,涵盖了使用各种技术和内部工具的公司。
截至目前,我们拥有关于 15 家使用 rasa NLU 的公司的数据。
rasa NLU 被广泛应用于包括 "Software Development", "It Services And It Consulting", "Advertising Services", "It Services And It Consulting", "Software Development", "It Services And It Consulting", "Banking", "Manufacturing", "Telecommunications" 在内的各个行业的各种组织中。欲了解所有使用 rasa NLU 的行业的完整列表,请访问 TheirStack.com。
一些使用rasa NLU的公司包括UNAMANI AI, conversationHEALTH, Real Chemistry, Toyota Connected India, Jobs via Dice, TMS, LLC, Bank of America, Harman, TekwissenGroup, 株式会社テックビズ以及更多公司。您可以在TheirStack.com上找到使用rasa NLU的15家公司完整列表。
根据我们的数据,rasa NLU 在 美国 (4 companies), 奥地利 (1 companies), 加拿大 (1 companies), 印度 (1 companies) 最受欢迎。然而,它被全世界的公司所使用。
您可以在TheirStack.com上搜索rasa NLU,来找到使用该技术的公司。我们跟踪数百万家公司的招聘信息,并借此发现他们正在使用的技术和内部工具。