Company | Country | Industry | Employees | Revenue |
---|---|---|---|---|
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
|
技术使用统计数据和市场份额
您可以通过筛选地理位置、行业、公司规模、收入、技术使用情况、职位等来根据您的需求定制这些数据。您可以以Excel或CSV格式下载数据。
您可以获得有关此数据的提醒。您可以通过选择您感兴趣的技术来开始,然后当有新公司使用该技术时,您将会在您的收件箱中收到提醒。
您可以将这些数据导出到一个Excel文件,然后导入到您的CRM中。您也可以将这些数据导出到API。
XGBoost 被用于 63 个国家
我们掌握了关于使用XGBoost的2,460家公司数据。这个精心策划的名单可以下载,并附带了重要的公司具体信息,包括行业分类、组织规模、地理位置、融资轮次和收入数据等。
Technology
is any of
XGBoost
公司 | 国家 | 行业 | 雇员 | 收入 | 技术 |
---|---|---|---|---|---|
美国 | Financial Services | 2.6K | $1.2B | XGBoost | |
美国 | Technology, Information And Internet | 4K | $6B | XGBoost | |
Banking | 10K |
| XGBoost | ||
美国 | Software Development | 7.9K | $1.1B | XGBoost | |
美国 | Software Development | 21K | $1.5B | XGBoost | |
美国 | It Services And It Consulting | 630 | $90M | XGBoost | |
美国 | Financial Services | 57K | $36B | XGBoost | |
美国 | Insurance | 440 | $13M | XGBoost | |
澳大利亚 | Financial Services | 980 | $696M | XGBoost | |
美国 | Software Development | 8.7K | $1.9B | XGBoost |
有 28 个 XGBoost 替代品
24.3k
18.4k
8.3k
5.9k
5.4k
5k
1.1k
510
160
56
54
36
22
20
18
7
7
2
1
1
1
1
0
0
0
0
0
0
常见问题
我们的数据来自于从数百万家公司收集的招聘信息。我们在公司网站、招聘平台和其他招聘平台上监控这些招聘信息。分析招聘信息提供了一种可靠的方法来了解公司正在使用的技术,包括他们使用的内部工具。
我们每天更新数据,以确保您访问的是最新的可用信息。这一频繁的更新过程保证了我们的洞察力和情报反映了行业内的最新发展和趋势。
XGBoost, short for Extreme Gradient Boosting, is a powerful machine learning algorithm known for its efficiency and speed in dealing with structured data. Developed by Tianqi Chen in 2014, XGBoost has gained immense popularity for its ability to provide high performance on a variety of tasks, including classification, regression, and ranking problems. It is based on the concept of gradient boosting, where new models are trained to correct errors made by existing models.
In the category of Python Build Tools, XGBoost stands out as a versatile tool that is commonly used for building machine learning models. It is particularly popular in data science and analytics for its accuracy and speed, making it a preferred choice for professionals looking to optimize their predictive modeling tasks. With its efficient implementation and support for parallel processing, XGBoost has become a go-to solution for a wide range of applications in the field.
Having rapidly gained traction since its inception, XGBoost has established a significant presence in the machine learning community. It currently holds a substantial market share within the domain of gradient boosting algorithms, with many professionals and organizations leveraging its capabilities to enhance their data analysis workflows. As the demand for advanced analytics and predictive modeling continues to grow, XGBoost is expected to maintain its market position and potentially expand further due to its proven performance and widespread adoption.
您可以访问 TheirStack.com,获取使用 XGBoost 的公司更新名单。我们的平台提供了一个全面的数据库,涵盖了使用各种技术和内部工具的公司。
截至目前,我们拥有关于 2,460 家使用 XGBoost 的公司的数据。
XGBoost 被广泛应用于包括 "Financial Services", "Technology, Information And Internet", "Banking", "Software Development", "Software Development", "It Services And It Consulting", "Financial Services", "Insurance", "Financial Services", "Software Development" 在内的各个行业的各种组织中。欲了解所有使用 XGBoost 的行业的完整列表,请访问 TheirStack.com。
一些使用XGBoost的公司包括Affirm, Cash App, JPMorgan Chase & Co, Yelp, Instacart, Nexient, Capital One, Clearcover, Afterpay, Snowflake以及更多公司。您可以在TheirStack.com上找到使用XGBoost的2,460家公司完整列表。
根据我们的数据,XGBoost 在 美国 (900 companies), 英国 (175 companies), 法国 (104 companies), 印度 (70 companies), 德国 (55 companies), 加拿大 (54 companies), 西班牙 (44 companies), 巴西 (33 companies), 荷兰 (31 companies), 澳大利亚 (25 companies) 最受欢迎。然而,它被全世界的公司所使用。
您可以在TheirStack.com上搜索XGBoost,来找到使用该技术的公司。我们跟踪数百万家公司的招聘信息,并借此发现他们正在使用的技术和内部工具。